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Perturbation theory proves to be a powerful approach to obtain in analytic form both 
vibration-rotational energies and matrix elements of the dipole moment of diatomic molecules 
in terms of the expansion parameter -y = 2Be~we, Bc and wc being, respectively, the equilibrium 
rotational and harmonic vibrational spectral parameters. A systematic and efficient algorithm 
has been developed to execute such calculations with sufficient accuracy for most physical 
applications when the potential-energy function is accurately represented in the Dunham form. 
The method also provides analytic expressions of the Herman-Wallis coefficients C~ and D~ 
for the vibration-rotational overtone bands J ~ - v  for diatomic molecules in ly~ electronic 
states. 

1. Introduction 

The approach that  Herman  and Wallis [1] proposed to investigate the influence 
of  the v ibra t ion-rota t ional  interaction on the intensities o f  lines in vibrat ion- 
rotat ional  bands  of  diatomic molecules has become a s tandard way  to determine 
the coefficients Mj of  the expansion of  the molecular  dipole momen t  abou t  the equi- 
l ibrium separat ion in terms of  the reduced variable x -- (R - P~)/Re; here R is the 
instantaneous internuclear separation a n d / ~  is the equilibrium distance. The 
applicat ion of  this method requires the calculation of  matrix elements o f  x to non- 
negative powers  between vibration-rotational  states with an accuracy comparab le  
to the corresponding experimental measurements.  These matr ix elements can be 
calculated either by numerical integration of  the Schr6dinger equat ion with a prop-  
erly chosen potential-energy function [2-5] or analytically [1,6-30]. Al though 
numerical  methods  may  be necessary for very high vibrational  states, they are no 
more  accurate than analytic expressions in current practical applications for states 
of  relatively small vibrational energy [8,22,31]. Among  other advantages,  analytic 
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expressions allow a more transparent interpretation of the experimental data and 
a simpler analysis of the relative magnitudes of the various contributions to the line 
intensities. Despite an evident increase in the complexity of analytic expressions 
for matrix elements and other quantum-mechanical quantities with increasing 
values of the vibrational quantum number v, the actual application of these expres- 
sions is computationally more rapid and more efficient than numerical solutions 
of differential equations that must be repeated for each particular value of the 
quantum numbers v and J (the latter for angular momentum), and even for each 
combination of vJ  and v'J'; therefore in our work we have concentrated primarily 
on analytic expressions. In order to generate sufficiently accurate analytic matrix 
elements one must base them on a correspondingly accurate analytic potential- 
energy function. Earlier use of the Morse oscillator showed that this function 
allowed no systematic improvement of the results and led to intractably compli- 
cated expressions [6]. Hence in most of the work to interpret quantitatively 
vibration-rotational spectra, use has been made of the Dunham potential-energy 
function (or functions of equivalent forms) that allows the systematic derivation of 
analytic matrix elements in terms of the small parameter 3' = A 2 = 2Be/we, Be and 
we being, respectively, the equilibrium rotational and harmonic vibrational spec- 
tral parameters. Perturbation theory provides a natural means to obtain an expan- 
sion in the form of a power series in terms of a small parameter [1,7-17]. As this 
approach is (inaccurately) believed to be tedious and difficult to extend to large 
orders, other procedures have been proposed. According to one procedure one 
expresses the vibration-rotational wavefunction as ~v](x) =gvj(x) exp[-  ½fY(x)dx] 
and expands both functions g~j and y in series of x to non-negative powers 
[18-27]. The hypervirial theorems that lead to recurrence relations among the 
desired matrix elements provide an alternative approach [28-30]; one solves 
iteratively these recurrence relations starting from the results for the harmonic 
oscillator. However, because these recurrence relations prove insufficient to obtain 
all the matrix elements one has to resort either to the method already mentioned 
or to the use of appropriate sum rules [21,26,29,30]. Of all these methods, the one 
based on explicit construction of the eigenfunctions has produced, in part by means 
of symbolic processors, the most extensive collection of matrix elements and 
Herman-Wallis factors [19-27]. 

For an approach to calculate general analytic vibration-rotational matrix ele- 
ments to be acceptable, at least three conditions must be fulfilled: the procedure 
should be flexible enough to allow a systematic improvement of the accuracy of the 
results according to the increasing accuracy and extent of the experimental data; 
it should be readily tractable by means of symbolic processors to allow extensive 
calculations, and it should be entirely automatic in the sense that no interactive 
manipulation, likely to lead to human mistakes, should be required. Some methods 
to which we have alluded are appropriate for manual calculation and interactive 
use of symbolic processors but seem less easily adaptable to automatic computa- 
tion according to a general and currently implementable algorithm. A weak feature 
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of previous applications of perturbation theory is the use of standard textbook for- 
mulae which are unsuitable for algebraic programming [7-15]. Even the applica- 
tion of contact transformations has proved to be of limited avail due to the 
extremely complicated expressions that arise [16,17]. An alternative approach 
based on perturbed ladder operators and expansion of the potential-energy func- 
tion in terms of Hermite polynomials has been used to calculate expectation values 
but not off-diagonal matrix elements [32]. The powerful method consisting of the 
iterative construction of the eigenfunctions has in the past required either tedious 
manual calculations or interactive use of symbolic processors [18-27]. Despite such 
disadvantages, successive application of those techniques during the past forty 
years has enabled the calculation of all the Herman-Wallis coefficients Cf~ and D e 
with 0 ~< (v ~ - v) ~< 7 required for the interpretation of the then available experimen- 
tal data. 

Calculating the required rotationless matrix elements and Herman-Wallis fac- 
tors by means of direct numerical integration of the Schr6dinger equation with an 
RKR potential energy, Carlisle et al. [5] used the numerical results to determine the 
coefficients of the assumed dipole-moment function from the newly measured 
intensities of some overtone bands of HBr up to v --- 8. Such an RKR potential 
energy suffers from limited accuracy because only the zero-order BKW integrals 
are at present calculable. To perform the same calculation entirely in accordance 
with an analytic approach, one must first derive the expressions for the Herman-  
Wallis coefficients C08 and D 8 because they are so far unreported. These expres- 
sions, and the succeeding ones for even higher overtone and "hot"  bands, are most 
readily obtained by means of an algorithm satisfying the three properties specified 
above. We describe here such a calculation based on perturbation theory that 
allows in principle the calculation of any vibration-rotational matrix element and 
Herman-Wallis factor in a most efficient, systematic and automatic way. 

In order both to make the paper self-contained and to introduce a consistent 
scheme of notation we first review briefly the method of Herman and Wallis [1]. 
Formulating the Rayleigh-SchrSdinger perturbation theory in the most conveni- 
ent way for the use of symbolic processors we demonstrate that when the vibration- 
rotational energies and matrix elements are expanded in series of A to non-negative 
powers some contributions vanish; by avoiding their superfluous calculation 
one makes economical use of both memory space in a computer and duration of 
computation. The implementation of these principles according to an efficient 
algorithm has yielded analytic expressions for the Herman-Wallis coefficients C~ 
and Dve . 

2. Basis o f  the formulation 

According to the quantum theory of radiation, the intensity of the spectral line 
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associated with the vibration-rotational transition between two states denoted by 
v~J r ~-- vJ is proportional to 

Z ~ I<~vJ YJM'IMI~ReJ' YJtMJt )12' (1) 
M1 M.I I 

in which ~P,] and YJMj are, respectively, the radial and angular parts of the 
vibration-rotational wavefunction with vibrational quantum number v = 0, 1 , . . .  
and rotational quantum numbers J = 0, 1 , . . .  and Mj  = - J , - J +  1 , . . .  ,J .  
Because every component of the dipole-moment vector operator M factors as a 
common radial part M(x) multiplied by an angular part giving its orientation in 
space equation (1) simplifies to [1] 

I (~V,]lM(x)I#¢], } 12 [S~J-1,J, + (J + 1)~j+l,.,,]. (2) 

In the neighbourhood of the equilibrium internuclear separation, we approxi- 
mate the dipole-moment function M(x) with reasonable accuracy by 

M(x) = Z MjxJ" (3) 
j=0 

Therefore, if the dipole moments matrix elements (~0,0 IM(x)I~Pv,0 } were available 
one could determine the coefficients Mj from the set of equations 

V,n 

(~0,01M(x)l~V¢,0> = ~Mj (~v0 ,01xJ l~¢ ,0> ,  v r = 0, 1 , . . . , v , , ,  (4) 
j=0 

in which Vm denotes the quantum number of the highest overtone band measured. 
Because the line intensities depend on the square of the dipole-moment matrix ele- 
ments, the sign of the term on the left side ofeq. (4) is thus unknown. One can deter- 
mine it from the Herman-Wallis factors F~ e (m±) defined according to 

I<~0,jIM(x)l~Vjj ,>l  2 = Foe(m±)l<C~0,01M(x)l~<0>l 2 , (5) 

in which v = 0 for the cases of greatest interest. In this expression m± 
= [J±(J± + 1) - J(J + 1)]/2 with J '  = J± = J + 1 so that J(J + 1) = m±(m± - 1) 
and J± (J± + 1 ) = m± (m± + 1) [31 ]. Since m+ and m_ satisfy identical equations for 
simplicity we write rn for me from now on. The Herman-Wallis factors are com- 
monly fitted to a polynomial function of m: Fo e (m) = 1 + Ceo m + DOe m2 +. . . ,  in 
which Cfr 0 and Do e denote the Herman-Wallis coefficients. From the squares of the 
individual dipole-moment matrix elements derived from the experimental line 
strengths one obtains by means of a fitting procedure the rotationless matrix ele- 
ments and the Herman-Wallis coefficients. Comparing the experimental and theo- 
retical Herman-Wallis coefficients enables one to determine uniquely (subject to 
experimental error) a set of dipole-moment coefficients Mj.. In order to obtain the 
theoretical Herman-Wallis coefficients one has to calculate the matrix elements 
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(Oo,jIM(x) lOej,) according to an accurate representation of the potential energy. 
We proceed here with the convenient representation proposed by Dunham [3 3]: 

V(R) = aox2 (l  + E ajxJ i . (6) 
j= l  / 

3. Per turbat ion theory and matrix elements 

The standard form of the Rayleigh-Schr6dinger perturbation theory generally 
described in textbooks on quantum mechanics leads to closed-form expressions for 
the energies and eigenfunctions (and thereby for matrix elements and Herman-  
Wallis factors [7-15]) which are useful for manual calculation but unsuitable for 
machine computation with a symbolic processor. A step intermediate in the devel- 
opment of those final closed-form expressions proves more convenient. As the 
practical utility of perturbation theory has been overlooked by even some users we 
deem it essential to develop in detail the appropriate formulae that we believe 
make this approach more convenient than others to obtain analytic expressions for 
vibration-rotational matrix elements. 

If the Hamiltonian operator H can be expanded in a series of an appropriate 
parameter A to non-negative powers, 

H = E HpA', (7) 
p=0 

in such a way that the eigenfunctions and eigenvalues of H0 are known 

O0krt(n°) = E(0)k/9(0)n n , (8)  

then one can expand the perturbed eigenvalues and eigenfunctions according to 

En= E E ~ ) A  p, On= EkOn(P)A p, (9) 
p=0 p=0 

and obtain the coefficients of these expansions from the physically acceptable solu- 
tions of 

P 
[H0 - E~(°)]g@ = ~IE(, s) - Hslg'~ -s), p = 1,2, . . . .  (10) 

7 - -  

s=l 

We assume that ff'n is normalized to unity for all values of A so that g,(0) is also nor- 
malized to unity. If we apply (g,(0)[ from the left we obtain an expression for the 
perturbation correction to the energy of order p in terms of expressions of lesser 
order: 

p--1 

= + - (11) 
s----I 
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On the other hand, if we apply (~(0) [ withj  # n we derive an expression for the cor- 
rections to the eigenfunction 

<,,.;o>i,,,.z) > = (12) 
s = l L n \ s  i n  

From the perturbation expansion of (~nl~n) = 1 we obtain an additional equa- 
tion for the perturbation corrections to the eigenfunction 

p-1  

> = p >  1; = 0 .  13) 
s=l  

For the present application of perturbation theory it is convenient to expand the 
perturbation corrections to the eigenfunctions as linear combinations of the unper- 
turbed eigenfunctions 

~ )  ~ ~).-,-.(o) 
= L cfn ~') • (14) 

J 

The coefficients of these expansions are obtained from recurrence relations that 
we discuss in detail below in relation to the present problem. 

In the case of a diatomic molecule in a 1E electronic state, and within the Born- 
Oppenheimer approximation, the vibration-rotational energies Evj and eigenfunc- 
tions ff%j are solutions of the Schr6dinger equation for the rotating oscillator of 
reduced mass #: 

h 2 d 2 h 2 J ( J + l )  
- 2 # d R  2 + V ( R ) + 2 #  R 2 (15) 

The physically acceptable eigenfunctions of this operator vanish at R = 0 and 
when R-+ ~z. In order to rewrite the Schr6dinger equation in a convenient form for 
the application of perturbation theory we define the new variable q = x/A,  with 
A = "71/2 = (2Be/we)1/2, and expand the centrifugal term in eq. (15) in a series ofq to 
non-negative powers. Using the Dunham form (6) for V(R) and the relation a0 
= w~e/(4Be ) we obtain the following expression for the dimensionless operator 
H = ( h c w e ) - I  [J'C - hcBeJ(J + 1)]: 

1 d 2 1 1 E 
H -  2 dq2 +2q2  + [ a j q j + 2 + ( - 1 ) J ( j + l ) ) ~ 2 J ( j + l ) q J ] ) j ,  (16) 

j = l  

to which we apply the perturbation method described above with the Hamiltonian 
operator for a dimensionless harmonic oscillator, 

1 d 2 
H0--  2 dq 2 + l q 2 ,  (17) 

and 
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Hs= 1[asq s+z + (-1)S(s - 1)O(s)J(J + 1)¢-2].  (181 

For compactness we have introduced the function O(s) which is equal to zero if 
s ~< 2 and equal to 1 otherwise. 

Before proceeding we deem it worthwhile to recount briefly the problem of the 
boundary conditions because it seems to be poorly understood. When we change 
variables from R to q the coordinate origin R = 0 is mapped into q = - 1/A; there- 
fore within the realm of perturbation theory, which implies an expansion of all 
quantities about A = 0, the point R = 0 is mapped into q ~ - oo. For  this reason 
the unperturbed model is the familiar harmonic oscillator with - c ~  < q < oo. The 
approximate perturbed eigenfunction fails to vanish at R = 0 but at this point it has 
the form p(A) exp[-1/(2A2)], in which p(A) is a polynomial of A with a leading 
term that is expected to decrease in magnitude as the perturbation order increases. 
In other words, once one adopts perturbation theory as the approximate method 
to treat the problem just mentioned one has to choose the boundary conditions for 
the harmonic oscillator in one dimension, but in so doing one makes no additional 
approximation. 

To simplify the notation we designate the eigenfunctions of the harmonic oscilla- 
tor by In>, n = 0, 1 , . . . ,  because they do not depend on J. Straightforward applica- 
tion of the perturbation theory described above to the rotating anharmonic 
oscillator in eq. (16) leads to the following equations for the perturbation correc- 
tions to the energies and expansion coefficients for the wavefunctions: 

p Ia k12 
End) =I  E s Z (nlqS+Zlk)c~nS) 

s=l k=kll 

k22 '] p- 1 
+ ( - l l S ( s  - l lO(slJ(J + 1) ~ (nlq~-:lk)c~ -s)j - ~V" E(S)c (p-s )"  ~,, , (19 / 

k=k21 s=l 

c~) = ( j _ n ) - I  E~n c) n _1 as 
k=k3 I 

+ (-1)S(s - 1)O(s)J(J + 1) E  1 -21k>c 2 , 
k=k4t 

p>o,  (20) 

p-1 jz 

c. 2 ~j, ~j, . 
s=l j=Jl 

The lower and upper limits of these sums are 

(211 
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k l l  = 

k21= 

k31 = 

k41 = m a x { O , j - s + 2 , n -  3 (p - s )} ,  

jl  = max{O,n - 3s, n - 3(t7 - s)} and 

max {O,n - s -  2 , n .  3(p - s)}, k12 ~-- min {n + s + 2,n + 3 ( p -  s)}, 

m a x { O , n - s , n - 3 ( p - s ) } ,  k22=min{n+s ,n+ 3(p - s ) } ,  

m a x { O , j - s -  2 , n -  3 (p - s )} ,  k32 = m i n { j + s + 2 , n + 3 ( p - s ) } ,  

k42 = min {j  + s - 2 ,  n + 3 ( p  - s ) } ,  

j2 = min {n + 3s, n + 3(p - s)}, 

containing the indicated maxima and minima. From these recurrence relations 
one obtains all the expansion coefficients hierarchically starting from cJ °) = 6yn. 
The perturbation corrections to the energies are irrelevant here as they are calcu- 
lated more efficiently by means of the hypervirial perturbative method [34]. The 
calculation of the matrix elements of q to non-negative powers in the basis set of the 
harmonic oscillator is straightforward; as several formulae are given in standard 
textbooks on quantum mechanics we need not amplify it here. It suffices to state 
that because of the leading anharmonic term al q3 in the potential-energy function 
and because (nlq ilk) = 0 if In - k I )i then c~ ) = 0 if In - j[ )3p. 

One can easily obtain closed-form expressions for the perturbation corrections 
to the eigenvalues and eigenfunctions from eqs. (19)-(21) in terms of the harmonic 
oscillator eigenvalues and eigenfunctions in the way shown in most textbooks on 
quantum mechanics. This procedure, followed by most authors in their calcula- 
tions of Herman-Wallis factors [1,7-15], soon becomes tedious because of the 
increasing complexity of the intermediate and final explicit expressions. Here, on 
the other hand, we solve eqs. (19)-(21) hierarchically for p = 1 ,2 , . . .  up to the 
greatest desired perturbation order by means of a symbolic processor so that the 
whole problem reduces to the relatively trivial task of programming these equa- 
tions in a convenient way. The procedure is clearly indicated by the equations them- 
selves: for every perturbation order p one obtains Eft ) and cj~ 3 in terms of 
corrections of lesser order obtained in previous steps. 

We showed above that the theoretical determination of the transition moments 
reduces to the calculation of matrix elements of the form <O,jlqilO~j,>. The latter 
quantities are directly expressed in terms both of the coefficients % just obtained 
and of matrix elements between harmonic-oscillator eigenfunctions according to 

P 
(~/vJlqilff/v,:, > = ~_~ A p ~. \=~j/'r/(s)l"il'r/(p-s)\,u ,=~.j, / 

p=0 s=0 

P j2 kz 

- ( J ' ) ( i l q q k > ,  (22) 
p=0 s=0 j=jl k=kl 

in which jl  = max {0, v - 3s}, ja = v + 3s, kl = max {0, v' - 3(p - s) , j  - i}, and ka 
= min {z/+ 3(p - s) , j  + i}. By repeated application of this formula one easily 
derives analytic expressions for the matrix elements of the dipole moment: 
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<~,JIM(x)l~j,> = y ]  MAi<ff%Jlqil~eJ'> , 
i=0 

(23) 

consistent with all the required powers of ~. 
The expanded form of the Hamiltonian operator given in eq. (16) exhibits inter- 

esting symmetry properties that are useful not only to verify the results but also to 
make the calculation more efficient. This operator is invariant under the transfor- 
mation ()~, q ) ~  ( - ~ , - q )  so that ff%j(-~,-q) = -t-Ovj(~, q). Therefore it follows 
from this equality and from O,j (O, -q)= (-1)vo~j(O, q) that O ~ j ( - ~ , - q )  
= (-1)vff%j(,k, q) for all values of X Expansion of both sides of the latter equation 
in series of A to non-negative powers demonstrates that ~v(v(v(vJ ) ( -q)  = ( -  1 )~P+v'~'(P)~%j ~q)", 
so that c~ ) (J) = 0 if v + k + p is odd. Arguing analogously one easily proves that 
the perturbation correction of order p to (Ovsl~lOeJ,) vanishes when v + z /+  j + p 
is odd. This result was previously noticed but not proved rigorously [30]; more- 
over, this perturbation correction vanishes when j < I(C - v) l - p with p < I t / -  v I 
[30]. This result, which follows partly from the symmetry argument just given and 
partly from the number of terms in the vibration-rotational eigenstates, is con- 
firmed by our calculations. By means of all these simplifications each vibration- 
rotational matrix element of the dipole moment becomes reduced to a leading term 
plus corrections of which only the first is significant for practical applications: 

if+2 
(fflo,jlM(x)lk~v,j,) = )~J+2 E MJ(ff/°,JlqJ[k~es')(v'+2-J) 

j=0 
d+4 

+ Av'+4 E MJ(krtO,J[qJlkrtv'J')(v%4-J) q- O(Av'+6) " 
j=0 

(24) 

4. Herman-Wal l i s  coefficients 

Following Herman and Wallis [1] we express the dipole-moment matrix 
elements 

<~O,jIM(x) [fftv'j' > = <fit0,0 IM(x) l~V~,0 > + Gu (m), (25) 

in which Ge (m) is a polynomial function of the running index m that is generally 
truncated up to second order 

Gv,(m) = aem +flv, m 2 + (9(m3) • (26) 

Under this approximation, which is sufficiently accurate for the analysis of present 
experimental data, the ratio of vibration-rotational matrix element to pure vibra- 
tional matrix element, i.e. the Herman-Wallis factor, becomes 
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I <kv0,j I M (x) IO tJ, >12 
FO e (m) i< 0,0lM(x)l V¢,0>12 1 + 

2aem 
I<kV0,01M(x) 

+ (a 2 + 2/3 ,)m 2 

I< o,olM(x) I  ,o>I 2 + O(m3)  " 
(27) 

The coefficients a,/and ~3~/are easily calculated from the equations derived in the 
previous section which are suitable for programming with a symbolic processor 
such as Maple or Reduce. By this means we have generated the expressions for a8 
and/38 thus extending the previous calculations [23,24,27]. We do not present them 
here because they are too long and extremely cumbersome. However, they are 
available upon request. The coefficients ae  and/3,/that we here introduce simplify 
the presentation of the results and are simply related to the coefficients Cff0 and 
Doe customarily used; the relations are obvious according to the definition in 
eq. (27). At every step of the calculation we have truncated all intermediate expres- 
sions to the order m 3 in order to obtain just the desired Herman-Wallis coefficients 
and to keep the memory requirements to a minimum; we could easily extend the 
calculation to coefficients ofm to higher powers if necessary. 

5. Discussion and conclus ion  

The perturbation method developed in this paper proves useful to calculate 
both matrix elements of the dipole moment and Herman-Wallis factors because it 
involves simple recurrence relations that are easily programmable by means of 
standard symbolic processors. The calculation proceeds hierarchically through the 
perturbation equations in a way which is familiar in perturbation theory so as to 
yield at each step all terms consistent with the corresponding power of A. This con- 
sistency is important because of cancellation of terms. To test our method we 
have repeated the calculation of all previously published results for Co g and Doe; by 
means of our newly developed algorithm we confirm thereby the correctness of 
those results [23,24,27]. Likewise we have not only verified the vibrational matrix 
elements previously reported [36] but also extended them in the order of the poten- 
tiM-energy coefficients aj, the power of x (or Aq in eq. (22)) and the vibrational 
quantum number v. Because our method eliminates the need to use symbolic pro- 
cessors interactively, the calculation of Herman-Wallis coefficients for higher 
overtones and "hot"  bands has been made automatic. These results obtained by 
means of perturbation theory are expected to be accurate enough provided that the 
values ofv and [z / -  v I are not particularly large [10-15]. 

The calculation of Herman-Wallis factors for Raman transitions of 1Z-state dia- 
tomic molecules by means of the algorithm just described is straightforward, the 
only modification being the requirement of the proper relations between 
J ( J  q- 1), j r ( j r  .4_ 1) and m [31]. In also this case the analytic expressions generated 
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according to per turbat ion theory prove to be of  accuracy comparable  to those of  
numerical  calculations [31,35]. 

After  a new and accurate determination of  the potential-energy function of  
HBr,  taking into account  all the adiabatic and nonadiabat ic  effects as in recent 
determinat ions for other diatomic molecular  species [37,38] we shall proceed to a 
full critical and statistical analysis of  all available data  for the intensities o f  vibra- 
t ion-rotat ional  transitions and the Stark effect on pure rotat ional  transitions 
of  HBr  in order to determine accurately the dipole-moment  function, just  as we 
have done previously for HC1 [39]. For  this purpose the analytic expressions for the 
Herman-Wal l i s  coefficients Co 8 and Do 8 will be essential. 

A c k n o w l e d g e m e n t s  

We  thank the Nat ional  Science Council of  the Republic  of  China for suppor t  
of  this research. F .M.F.  thanks the Nat ional  Science Council  for appoin tment  as 
visiting associate research professor at the Institute of  Atomic  and Molecular  
Sciences. 

References  

[1] R. Herman and R.F. Wallis, J. Chem. Phys. 23 (1955) 637. 
[2] L.A. Young and W.J. Eachus, J. Chem. Phys. 44 (1966) 4195. 
[3] F.G. Smith, J. Quant. Spectrosc. Radiat. Transfer 13 (1973) 717. 
[4] M.F. Weisbach and C. Chackerian, J. Chem. Phys. 59 (1974) 4272. 
[5] C.B. Carlisle, H. Riris, L.G. Wang, G.R. Janik, T.F. Gallagher, A. Lopez Pifieiro and 

R.H. Tipping, J. Mol. Spectrosc. 130 (1988) 395. 
[6] R. Herman and R.J. Rubin, Astrophys. J. 121 (1955) 533. 
[7] R.A. Toth, R.H. Hunt and E.K. Plyler, J. Mol. Speetrosc. 23 (1969) 74. 
[8] R.A. Toth, R.H. Hunt and E.K. Plyler, J. Mol. Spectrosc. 23 (1969) 85. 
[9] R.A. Toth, R.H. Hunt and E.K. Plyler, J. Mol. Spectrosc. 36 (1970) 110. 

[ 10] J.P. Bouanich and C. Brodbeck, J. Quant. Spectrosc. Radiat. Transfer 14 (1974) 1199. 
[11] J.P. Bouanich and C. Brodbeck, J. Quant. Spectrosc. Radiat. Transfer 15 (1975) 873. 
[12] J.P. Bouanieh and C. Brodbeek, J. Quant. Spectrose. Radiat. Transfer 16 (1976) 153. 
[13] J.P. Bouanich, J. Quant. Speetrosc. Radiat. Transfer 16 (1976) 1119. 
[14] J.P. Bouanich, J. Quant. Spectrose. Radiat. Transfer 17 (1977) 639. 
[15] J.P. Bouanich, J. Quant. Spectrosc. Radiat. Transfer 20 (1978) 419. 
[16] Y.S. Makushkin and V.G. Tyuterev, Opt. Spectrosc. 37 (1974) 31. 
[17] H. Hanson, H.H. Nielsen, W.H. Shaffer and J. Waggoner, J. Chem. Phys. 27 (1957) 40. 
[18] R.M. Herman, R.H. Tipping and S. Short, J. Chem. Phys. 53 (1970) 595. 
[19] R.H. Tipping and R.M. Herman, J. Mol. Spectrosc. 36 (1970) 404. 
[20] R.H. Tipping and A. Forbes, J. Mol. Speetrosc. 39 (1971) 65. 
[21] R.H. Tipping and J.F. Ogilvie, J. Mol. Struct. 35 (1976) 1. 
[22] R.H. Tipping, J. Mol. Spectrosc. 61 (1976) 272. 
[23] R.H. Tipping and J.F. Ogilvie, J. Mol. Spectrosc. 96 (1982) 442. 
[24] J.F. Ogilvie and R.H. Tipping, Int. Rev. Phys. Chem. 3 (1983) 3. 



142 F.M. Fern6ndez, J.F. Ogilvie / Analytic matrix elements of  the dipole moment 

[25] J.F. Ogilvie, W.R. Rodwell and R.H. Tipping, J. Chem. Phys. 73 (1980) 5221. 
[26] P. Bernage and P. Niay, J. Quant. Spectrosc. Radiat. Transfer 18 (1977) 315. 
[27] J.F. Ogilvie and R.H. Tipping, J. Quant. Spectrosc. Radiat. Transfer 33 (1985) 145. 
[28] R.H. Tipping, J. Chem. Phys. 59 (1973) 6433. 
[29] R.H. Tipping, J. Chem. Phys. 59 (1973) 6443. 
[30] P. Niay, C. Coquant and P. Bernage, Can. J. Phys. 57 (1979) 572. 
[31] R.H. Tipping and J.F. Ogilvie, J. Raman Spectrosc. 15 (1984) 38. 
[32] G. Hadinger, Y.S. Tergiman and G. Hadinger, J. Chem. Phys. 87 (1987) 2143. 
[33] J.L. Dunham, Phys. Rev. 41 (1932) 721. 
[34] F.M. Fernandez and J.F. Ogilvie, Phys. Rev. A42 (1990) 4001. 
[35] M. Cheung, D.M. Bishop, D.L. Drapcho and G.M. Rosenblatt, Chem. Phys. Lett. 80 (1981) 

445. 
[36] J.P. Bouanich, J.F. Ogilvie and R.H. Tipping, Comput. Phys. Commun. 39 (1986) 439. 
[37] J.F. Ogilvie, J. Mol. Spectrosc. 148 (1991) 243. 
[38] J.F. Ogilvie, J. Phys. B27 (1994) 47. 
[39] J.F. Ogilvie, Comput. Chem. 15 (1991) 59. 


